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Spin-orbit (SO) coupling can lead to many nontrivial effects in such fields as spintronics (Rashba
effect), topological insulators, or to the formation of topologically protected states in systems de-
scribed by the Heisenberg-Kitaev model, recently proposed for Na2IrO3. This proposal is based
on the fact the SO coupling for Ir is very strong. We show, however, that Na2IrO3 represents
a highly unusual case, in which the electronic structure is dominated by the formation of quasi-
molecular composite orbitals (QMOs). The QMOs consist of six atomic orbitals on an Ir hexagon,
and the orbital moment of each QMO is quenched. The concept of such QMOs in solids is com-
pletely new, and invokes very different physics compared to the models considered previously. For
instance, one has to account for Hubbard correlations among the QMOs, and not individual atomic
orbitals. Both, the insulating behavior and the experimentally observed zigzag antiferromagnetism
in Na2IrO3 naturally follow from the QMO model.

PACS numbers: 75.10.-b,75.10.Jm,71.70.Ej,71.15.Mb

The recent discovery of quasihexagonal sodium iridate
Na2IrO3, see e.g. Ref. 1 with a honeycomb lattice of
Ir4+ (5d5) ions has generated enormous interest. A very
nontrivial hierarchy of energy scales, with spin-orbit cou-
pling exceeding the three energies typically dominating
the physics of 3d and 4d transition metals (the Hub-
bard U , the Hund’s JH , and the one-electron hopping t),
has been proposed theoretically [2], and shown to have
a highly nontrivial phase diagram[2, 3]. It is presumed
in this so-called Heisenberg-Kitaev model that the three
orbitals forming the t2g band of Ir d states are nearly de-
generate in energy and their hopping between sites is lim-
ited by the nearest neighbor (n.n.) bonds and proceeds
through two main channels. One is the direct overlap
of the Ir d orbitals, t1, and the other an assisted hop-
ping through oxygen p orbitals, t′1 = t2pdπ/(EF − Ep),
where EF is the Fermi energy lying in the d band, i.e.
EF ∼ Ed. For ideal IrO6 octahedra this latter hopping is
allowed, for each of the three n.n. bonds, only between
a particular pair of unlike orbitals, for instance, between
dxz and dyz. It is further assumed that the spin-orbit in-
teraction is much larger than any one-electron hopping.
If that were the case, the degeneracy of the t2g orbitals
would have been lifted and the ground state would be
a Kramers doublet with total angular momentum (effec-
tive spin) 1/2. From the one-electron point of view, this
means that the three real harmonics do not represent
a good basis to describe the t2g states; a better basis
would be one that maximizes the angular moment [4, 5]:
dxz+ idyz, dyz+ idxy, and dxy+ idxz. A strong spin-orbit
will hold the spins of these complex orbitals parallel to
z, y, and x, respectively. If only hopping via oxygen p
orbitals is allowed (see a detailed discussion later in this
paper), and the Ir-O-Ir angles are all 90o, then for each of
these complex orbitals there will be one particular bond
direction where the effective hopping will be maximized.

According to the Goodenough-Kanamori rules, in this
case the magnetic coupling along this bond will be fer-
romagnetic, and maximized when the spins are parallel
to the corresponding (different for each bond) quanti-
zation axis, with the coupling strength of the order of
JOt

4
pdπ/(EF − Ep)4 = JO[t′1/(EF − Ep)]2, where JO is

the Hund’s rule coupling on oxygen. Combined with the
direct Heisenberg exchange of the order of t21/U , these
considerations lead to the following Hamiltonian, usually
called “Heisenberg-Kitaev” [2]:

Hij = JASi · Sj − JFS
γ
i S

γ
j , (1)

where Si is the effective spin formed at site i. For each
pair i, j there exists one particular cubic direction γ =
x, y or z. Here JA > 0 is the Heisenberg antiferromagnetic
term and JF > 0 is the ferromagnetic superexchange[8].
This Hamiltonian leads to a nontrivial phase diagram, in-
cluding a quantum spin liquid phase with gapless excita-
tions of Majorana fermion type at large JF [6]. Recently,
a modification of this model with considerable 2nd and
3rd n.n. Heisenberg exchange interactions has also been
proposed [7] mainly because the original model failed to
describe the existing experimental data.

This model (Eq. (1)), however, implies a very partic-
ular hierarchy of energies, namely the spin-orbit interac-
tion must dominate over both the one-electron hopping
and the trigonal crystal field splitting of the t2g orbitals.
Also, in order to ensure a long range magnetic order in
this model the superexchange interaction should be com-
parable with the direct exchange.

It appears that both these conditions are violated in
Na2IrO3. It has been pointed out [9] that the real, ac-
curately determined crystal structure of Na2IrO3 [9, 10]
features Ir-O-Ir bond angles that are close to 98o. Note
that for 5d metals U ∼ 1 − 1.5eV � (EF − Ep). In this
regime the ferromagnetic part of the superexchange is
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determined by the ratio JO[t′1/(EF − Ep)]2, while the
antiferromagnetic part by the ratio (t′1)2/U. Given that
JO ∼ U � (EF − Ep), it becomes obvious that the net
interaction is only ferromagnetic in a narrow range of
angles close to 90o, where the antiferromagnetic superex-
change disappears [11]. An angle of 98◦ is clearly outside
this range.

Secondly, the total width, W , of the t2g band is
about 1.5 eV, which is larger than the spin-orbit cou-
pling λ . 0.5 eV thus violating the first condition of the
Heisenberg-Kitaev model as well.
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FIG. 1: (a) Electronic structure for the non-magnetic state of
Na2IrO3 without inclusion of spin-orbit coupling for the ex-
perimentally determined crystal structure. The calculations
were performed with the full potential local orbital (FPLO)
basis using the generalized gradient approximation (see Suppl.
Information).

Note that the spin-orbit coupling λ is largely reduced
by hybridization with oxygen and, as explained below, by
the quenching of the orbital moment. The trigonal split-
ting ∆T could be in principle large, but appears small
because of cancellation of various factors, as shown be-
low.

How then should one approach the electronic structure
of this compound, given that the energy hierarchy is in
reality W > U > λ > JH > ∆T ?

In order to answer this question, we have first per-
formed ab initio calculations [12] of the electronic
structure, using the experimentally determined C 2/m
structure [9], without including the spin-orbit coupling
(Fig. 1). A cursory glance at the calculated band struc-
ture reveals a picture rather removed from the naive
quasiatomic considerations underlying Eq. (1): instead
of the expected splitting of the 6 t2g states (there are two
Ir atoms per unit cell) into two a1g and four e′g states,
we observe an ordering of the states into a single-state
band at ∼ −1.2 eV, a two-states one at ∼ −0.6 eV, and
a three-states manifold at the Fermi level, which, as we

TABLE I: Six quasi-molecular orbitals formed by the six t2g
atomic orbitals on a hexagon. Here ω = exp(iπ/3) = 1

2
+

i
√

3
2

, ω2 = exp(2iπ/3) = − 1
2

+ i
√

3
2

= −ω∗, ω3 = −1, ω4 =

exp(4iπ/3) = − 1
2
− i
√

3
2

= −ω, ω5 = exp(5iπ/3) = 1
2
− i
√

3
2

=

ω∗, ω6 = 1

Symmetry Eigenenergy Eigenvector(s)

A1g −2t′1 1,1,1,1,1,1

E1u −t′1 1, ω, ω2, −1, ω4, ω5

(twofold) 1, ω5, ω4, −1, ω2, ω

E2g t′1 1, ω2, ω4, 1, ω2, ω4

(twofold) 1, ω4, ω2, 1, ω4, ω2

B1u 2t′1 1,-1,1,-1,1,-1

shall see later, consists of slightly overlapping two-states
and single-state bands.

To analyze this band structure, we have inverted it
using the Wannier function formalism (see Suppl. Infor-
mation), and extracted the hopping parameters up to the
3rd neighbors. We have found that by far the largest sin-
gle parameter is the O-assisted n.n. hopping, t′1 =262±2
meV. Therefore, a sensible starting point is the electronic
structure obtained by retaining only t′1 and setting all
other parameters to zero.

Let us first look at the crystal structure of Na2IrO3 in
a cubic setting, as shown in Fig. 2(a). The three types
of Ir-Ir bonds are parallel to the cubic directions (110),
(101), and (011). We call them, respectively, xy, xz and
yz bonds. As illustrated in Fig. 2(b), the only allowed
Ir-O pdπ hopping path along, for instance, the xy bond
(blue lines) takes us from the dxz orbital of one Ir to
the dyz one of a neighboring Ir, and so on. Let us now
consider an individual orbital, say, dxy, on a site that in
Fig. 3 is labeled as “1”. An electron can only hop along
the yz (red line) bond, into the dxz state on site 2, or
along the xz (green line) bond, into the dyz state on site
6. Following the allowed hoppings we realize that an elec-
tron starting in a particular orbital state will be always
localized on one hexagon, as there are no hoppings in the
system that would mix the states on two hexagons. The
quasi-molecular composite orbital so formed can be writ-
ten down as a linear combination of the 6 states on a par-
ticular hexagon; the problem is mathematically similar to
the molecular π-orbitals of benzene, or to the hypotheti-
cal SH6 molecule considered in the text book [13], except
that here the quasi-molecular orbital is formed by three
alternating atomic orbitals. As discussed in Ref. [13], the
exact solution for the possible phase combinations of the
component orbitals yields four eigenstates as shown in
Table 1.

Thus, we have a new basis for constructing our wave
functions: instead of two sites per cell, with the total of 6
atomic t2g orbitals, we have one hexagon per cell (which
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FIG. 2: (a) Crystal structure of Na2IrO3 in the cubic setting.
The hexagonal direction is along the 111 direction in this
setting. Ir, O and Na atoms are shown as grey, magenta,
and yellow spheres, respectively. The three inequivalent Ir-Ir
bonds are labeled according to their cubic directions. (b) A
cartoon illustrating formation of a quasi-molecular orbital on
an Ir6 hexagon. If only hopping via O p states is allowed,
for each of the three Ir-Ir bond types only hopping between
two particular t2g orbitals is possible. The same holds for the
second and third nearest neighbor hopping via O p and Na s
orbitals. Ir-Ir bonds are color coded as follows: xy bonds are
shown by blue lines, xz bonds by green, and yz bonds by red
ones.
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can be identified by the Na atom in the center), with 6
composite orbitals per ”site” (hexagon).

The next most important hoppings are second n.n.
ones between unlike orbitals, which proceed via the two
closest oxygen p orbitals and the diffuse Na s orbital.
These become particularly important if the O octahedra
around Ir are trigonally squeezed (as they are). Accord-
ing to our calculation, these hoppings are 79-80 meV,
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FIG. 3: (a) Schematic plot of a Ir6Na hexagon. We use the
same color coding as in Fig. 2, xy bonds are shown by blue
lines and dxy orbitals by blue dots, etc. (b) A quasi-molecular
composite orbital on a given hexagon. (c) Three neighboring
quasi-molecular orbitals.

3.3 times smaller than t′1. To the lowest order their am-
plitude is given by t′2 ∼ t2pdπt

2
sp/(EF − Ep)2(Es − EF ),

where the index s refers to Na s orbital. Importantly,
these hoppings take us from the dxy orbital on site 1 to
the dyz orbital on site 3, etc., again leaving the electron
within the same composite orbital. All other hoppings,
including the direct ddσ overlap implied in Eq. (1), are
at least a factor of two smaller. [14]

It is interesting that the trigonal splitting ∆, which
also couples the n.n. QMOs, is small (< 25 meV) even
though the distortion itself is large. This can be un-
derstood from the fact that three factors of comparable
magnitude determine the value of ∆ [15]: the ratio be-
tween the iridium-oxygen tppσ/tppπ (the sign of the lig-
and field depends on this ratio), the electrostatic field
on the Ir site, and the fact that the a1g orbital extends
over towards the positively charged Na (see Suppl. In-
formation), and is thus pushed down compared to the
e′2 orbitals. Apparently in the actual crystal structure of
Na2IrO3 these three factors largely cancel out.

Looking at the actual non-relativistic bands of
Na2IrO3, we see that the overall structure deduced in the
previous paragraphs survives (Fig. 1). The lowest band
is singly degenerate and separated from the next one.
The next lowest band is doubly degenerate, as expected.
However, the two upper bands (E2g and B1u) slightly
overlap. At the energy where they overlap a peak in
the DOS appears (Fig. 4) because of flat band dispersion
in that energy range. This peak has interesting conse-
quences. In the same figure we show the calculated non-
relativistic DOS in the ferromagnetic state. Since the
non-magnetic Fermi level appears close to this peak, the
system is unstable against ferromagnetism and exchange
splitting of the peak. The high DOS drives the system
into the half-metallic state where the majority bands are
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FIG. 4: Non-magnetic (purple) and ferromagnetic (orange)
density of states (DOS) of Na2IrO3 calculated with the FPLO
basis using the generalized gradient approximation without
spin-orbit coupling (see Suppl. Information).

−1.5

−1

−0.5

 0

 0.5

R Γ X M Γ

e
n

e
rg

y
 (

e
V

)

a

 0  20  40
DOS (states/eV/unit cell)

b

FIG. 5: Effect of spin-orbit on the band structure (a) and
DOS (b) of Na2IrO3. The purple and green lines refer to the
non-magnetic calculation without and with spin-orbit inter-
action, respectively. Note that the Fermi levels (shown by the
horizontal dashed lines) are not aligned.

fully occupied and the Fermi level cuts the minority band
right in the middle of the E2g band. Obviously, this is
a rather fragile situation, related to a particularly high
DOS at the Fermi level in the non-relativistic calcula-
tions, and one may expect the spin-orbit interaction to
change the magnetic ground state significantly just by
modifying the DOS.

Now that we have established the mechanism of for-
mation of the non-relativistic band structure, let us see
how turning on the spin-orbit coupling affects it. Here
another surprise awaits us. As Fig. 5 shows, the effect is
rather moderate. It is obvious that the spin-orbit inter-
action is strong but not dominant. Moreover, the lower
two manifolds, well isolated, experience only a very minor
spin-orbital effect, not more than 50 meV, and only a few

meV on average. The upper subbands, as mentioned pre-
viously, overlap and mix, which leads to sizable changes,
from 0.2 to 0.5 eV. Interestingly, the overlapped mani-
fold of two E2g and one B1u bands has now essentially
split into three individual subbands (which one cannot
any longer, strictly speaking, call E2g and B1u, but the
notion of the QMOs involving 6 atomic orbitals each still
holds). Now it becomes virtually impossible to produce
a half-metallic S = 1/2 state, as in the non-relativistic
case: an exchange splitting of ∼ 0.5 eV, corresponding
to M = 1 µB , is smaller than the combined band width
of the upper two bands.

All these seemingly unexpected results are in fact nat-
ural consequences of the QMO picture. Indeed, let us
consider first the A1g band (see Table I), and limit our-
selves to the t′1 only model (dispersionless bands). This
QMO has the same phases on all 6 sites. Let us consider
the spin-orbit interaction L̂·Ŝ at a given k-point, between
two QMOs. Let us say, to be specific, that they share an
“xy” bond, between the sites “2” and “3” in Fig. 3. Let
us further say that the distance between the centers of
the two QMOs is R, so that the phase factor between the
two QMOs is exp(ikR). The two orbitals on sites 2 and
3 are dxz and dyz (the first QMO) and dyz and dxz (the
second QMO), respectively. The matrix elements of the
orbital moment operator L̂ on site 2 and 3 is then

L2 = L∗3 =
〈
dxz + exp(ikR)dyz|L̂|dxz + exp(−ikR)dyz

〉
.

(2)
Since there is another QMO, located at −R, and involv-
ing the same atomic orbitals on sites 5 and 6, the corre-
sponding matrix elements also need to be added.

A direct calculation shows that L2 6= 0, L2 = L3 =
−L5 = −L6, and their contributions cancel identically.
A bit more tedious arithmetic shows that the two-fold
E1u state also has zero matrix elements of the angular
momentum, both diagonal and off-diagonal.

This is not the case for the matrix elements between
the B1u and any of the E2g states, forming the three
upper bands. Acting the same way, one can show that
the sum of all four components is nonzero, and, indeed, in
the calculations these states are strongly affected by the
spin-orbit coupling. As a consequence, the manifold of
the three bands splits into three individual bands; their
dispersion also increases. This broadening of the upper
bands is the factor preventing the system from getting
fully spin-polarized in the ferromagnetic calculations, and
reducing substantially the energy gain in the magnetic
state.

Importantly, as a result of the hybridization between
the E2g and the B1u bands, the latter becomes fully sep-
arated with only a tiny indirect overlap. [16] Since a gap
or pseudogap at the Fermi level is advantageous from the
point of view of the one-electron energy, one can expect
that such a non-magnetic band structure should promote
magnetic patterns that do not destroy the pseudogap. As
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we shall see, the stripy pattern (and, of course, the fer-
romagnetic one) destroy the pseudogap, but the zigzag
pattern preserves it (see Fig. 6). This gives the latter a
serious energetic advantage.

Let us now discuss the possibility of a Mott-Hubbard
state in this system. In previous works sometimes val-
ues of U of 3 eV and larger were considered [17, 18].
This is an unjustifiably large number, appropriate for
4d, but not 5d metals. Generally speaking, U is reduced
by about 1 eV when going to 4d metals (a typical value
being 2-3 eV) and by about as much when moving to
the fifth period. A quasiatomic estimate of U and J in
Na2IrO3 using the recipe from Ref. [19], yields U = 1.68
eV and J = 0.29 eV. With these values, U − J is not
enough to drive the whole t1g band into a Mott regime,
because its width W is larger than U. On the other hand,
the individual subbands are much narrower, and can be
strongly correlated in the Mott-Hubbard sense. In this
case, however, the relevant energy is not the atomic U ,
but UQMO, the energy cost of placing an extra electron
on a QMO. This is similar to correlation effects in the
narrow t1u band in fullerides [20]. Of course, UQMO is
much smaller than U ; assuming no additional screening
by other QMOs, UQMO ∼ U/6 . 0.3 eV. While this
seems like a small number, it is to be compared to the
band width of the individual subbands, which for the top
three bands is also 0.2-0.3 eV. This situation is very simi-
lar to the Mott state in TaS2, where the CDW combined
with the spin-orbit interaction creates an isolated very
narrow band, which experiences a Mott transition even
though U is only a small fraction of an eV.

The UQMO, in the non-magnetic state, can enhance
the already existing, but extremely small gap in the fully
relativistic DFT calculations (the minimal indirect gap is
zero within the computational accuracy, while the aver-
age direct, i.e., optical gap is about 150 meV), however
it would be probably misleading to call the material a
Mott insulator, since it is already nonmetallic in DFT
when including spin-orbit coupling. This fact has been
recently also pointed out in Ref. 18.

a b c

FIG. 6: Three antiferromagnetic patterns considered in this
paper: (a) zigzag, (b) stripy, and (c) Néel.

It has been common to try to describe the magnetic
ground state in terms of n.n. (up to 3rd neighbors) ex-
change of various kinds [7]. Given enough parameters,

any given state can be reproduced. In this capacity,
mapping effective interactions onto an effective Heisen-
berg model has been successfully applied to materials
where electrons are not localized at all and the concept
of superexchange is not applicable (metal Fe, or Fe-based
superconductors, for instance). We shall adopt however
a different approach and try to speculate about possible
magnetic orderings in terms of QMOs, which, as we have
established, play a crucial role in the electronic structure
of Na2IrO3. Since the non-magnetic ground state is insu-
lating, and the magnetic moment is small, one naturally
expects an antiferromagnetic ordering. To find out which
orders are naturally compatible with the QMO picture,
let us consider possible antiferromagnetic patterns and
simply calculate the energy of the highest (unoccupied)
QMO for a given pattern. On the one-electron energy
level, the pattern where the highest level has the largest
energy will win (because its occupied QMOs, combined,
will have the lowest energy).

The Hamiltonian we need to diagonalize is

∆exsiδij + tδi+1,j (3)

where i = {1...6}, and si takes +1 or −1, de-
pending on the pattern (Fig. 6). ∆ex is the ex-
change splitting. Specifically, in the Néel state si =
{+1,−1,+1,−1,+1,−1}, in the stripy phase si =
{±1,∓1,∓1,±1,∓1,∓1}, where half of the hexagons as-
sume the upper sign, and half the lower, and in the
zigzag phase si = {+1,+1,+1,−1,−1,−1}. Diago-
nalizing the Hamiltonian, we find the energy of the
upper orbital to be, respectively,

√
4t2 + ∆2

ex, t/2 +√
9t2 + 4t∆ex + 4∆2

ex/4 +
√

9t2 − 4t∆ex + 4∆2
ex/4 (af-

ter the averaging over both types of hexagons) and√
5t2/2 + ∆2

ex + t
√

9t2/4 + 8∆2
ex. The ferromagnetic

state in this model has no energy gain if ∆ex ≤ t/2, and
t−2∆ex otherwise. An elementary calculation shows that
the zigzag configuration is always the lowest among an-
tiferromagnetic states (Fig. 7). Ferromagnetism is com-
petitive with the zigzag patter, the actual winner being
defined by a fine balance between the Hund’s J and the
one-electron energy scales t and SO. Indeed in the DFT
calculations the energies of these two states are very close.
Such frustration, combined with high itinerancy inside
the hexagons, suggests that the magnetic long range or-
der (TN ) and the spin response (Curie-Weiss temperature
ΘCW in susceptibility) may be decoupled in this system,
and indeed the measured ΘCW is much larger than TN .

This picture is, strictly speaking, applicable for the
fully isolated QMO model, which, as we know, is a good
approximation for the three lower bands, A1g and E2u,
but not as good for the upper three, E2g and B1u. Indeed
in the DFT calculations without spin-orbit the order of
the magnetic states differs: the ground state is ferromag-
netic, the Néel state is (as in the model) the least stable,
but the zigzag and the stripy phase come out essentially
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FIG. 7: One-electron DFT energy gain in the QMO model
with respect to the non-magnetic energy, as a function of the
exchange splitting, for various magnetic configurations.

degenerate. It is easy to understand why the ferromag-
netic state is overstabilized in the DFT calculations: the
Stoner energy in DFT includes the unphysical Hund’s
rule coupling of each orbital to itself.

Introducing the spin-orbit coupling in the DFT calcu-
lations, interestingly, makes the system somewhat closer
to the above model. Even though the upper bands are
now hybridized, they are well separated and thus are
better described by the Hamiltonian of Eq. (3). Addi-
tionally, the zigzag phase, as opposed to the stripy one,
retains the gap at the Fermi level, which gives it an ad-
ditional energy advantage. As a result, the calculations
with spin-orbit coupling firmly place the zigzag structure
below the stripy one, although the ferromagnetic state is
still competitive with the zigzag structure, for the rea-
son discussed above [21]. Adding an atomic U makes the
magnetic moments and gaps larger but does not change
the energy hierarchy (we remind the reader that a phys-
ically meaningful accounting for a Hubbard U should be
done for the QMOs, not the atomic orbitals).

To summarize, we have constructed a complete model
of the electronic structure of a system of t2g orbitals on
a honeycomb lattice (of which Na2IrO3 is an example)
in the case where the dominant metal-metal hopping is
the n.n. hopping via oxygen and this hopping and the
resulting band width is the largest energy scale in the sys-
tem (which is the case in Na2IrO3). The model appears
to be highly nontrivial and very remote from the popu-
lar Heisenberg-Kitaev model. The main factor defining
the electronic structure is formation of quasi-molecular
composite orbitals[22], akin to the textbook molecular
orbitals of benzene or a SH6 ring. In the first approxi-
mation, the QMOs on different hexagons are orthogonal,
therefore the material forms already in non-relativistic

calculations a system of narrow (∼ 200 meV) subbands.
The spin-orbit interaction is basically quenched for the
lower two subbands, while for the upper two it leads to an
additional interaction between the quasi-molecular com-
posite orbitals, and emphasizes further the splitting of
the t2g band into four subbands. In the paramagnetic
state, as well as in the antiferromagnetic zigzag state,
only the uppermost band is empty, thus forming a band
insulator. Correlation effects, while weak in terms of the
ratio of the atomic U over the total t2g band width, are
moderately strong in terms of QMOs, thanks to the small
band width of the molecular subbands. An analysis of the
one-electron energy of the QMOs in the presence of an
antiferromagnetic order reveals that, in agreement with
the experiments, the so-called zigzag order is energeti-
cally favorable over the two competing antiferromagnetic
orders, Néel and stripy, by a substantial margin. Our
results open a completely new window on this intrigu-
ing compound and hopefully will lead to new theoreti-
cal and experimental research, now on the solid basis of
a well-understood electronic structure. In particular, it
will be instructive to address the superexchange between
the QMO in the same way it is usually done for atomic
orbitals; this is a subject for future work.
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The electronic structure calculations for Na2IrO3

shown in this supplement were performed with the full
potential local orbital (FPLO) code1 using the general-
ized gradient approximation functional in its PBE form2

and based on the C2/m structure as given in Ref. 3.
Fig. 1 shows the band structure of ferromagnetic

Na2IrO3 without taking spin-orbit interaction into ac-
count. The high symmetry points used in Figure 1
and in all further band structures are R = (1/2, 1/2, 1/2),
X = (1/2, 0, 0) and M = (1/2, 1/2, 0), given in units of the
reciprocal lattice vectors.
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FIG. 1: Band structure of the ferromagnetic Na2IrO3 without
including spin-orbit interaction. The two line types indicate
the two polarizations. Purple lines show the parent nonmag-
netic band structure. The Fermi levels in both cases were
aligned at E = 0.

We use projective Wannier functions4 to determine a
tight binding (TB) representation for the Ir 5d bands.
Figure 2 shows the DFT band structure together with
the bands corresponding to the Wannier representation
and the TB bands derived from this representation.

Figure 3 shows projective Wannier functions for the 5d
orbitals of one Ir site. The Wannier functions exhibit the
typical shape of the 5d functions at the Ir site. Besides,
they show a clear asymmetry due to Na as well as tails
on the O sites.

Figure 4 shows the band structure that results if we
restrict the tight binding Hamiltonian to first neighbours
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FIG. 2: Band structure of Na2IrO3 (red symbols) shown to-
gether with the Wannier bands (yellow) and the tight binding
bands (blue).

(top left), up to second nearest neighbours (top right),
up to third nearest neighbours (bottom left), and without
restriction (bottom right).

In Figure 5 we show the tight binding band structures
that are restricted to tight binding parameters which con-
tribute to the quasi-molecular orbitals. The four panels
represent onsite terms only (onsite energy and trigonal
distortion, top left), up to first nearest neighbours (top
right), up to second nearest neighbours (bottom left) and
up to third nearest neighbours (bottom right). Note that
the small dispersion that arises for nearest neighbours is
due to deviations from the perfect octahedral environ-
ment of iridium. This is most likely also the reason why
for second nearest neighbours the ideal 1-2-2-1 degener-
acy is lost near the Fermi level.
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FIG. 3: Projective Wannier functions for five of the ten Ir 5d bands, together with a structure showing the perspective.
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FIG. 4: Band structure of Na2IrO3 (red symbols) shown together with the tight binding models that include only nearest
neigbours (top left), up to next nearest neighbours (top right), up to third nearest neighbours (bottom left) and neighbours up
to 16 Å (bottom right).
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FIG. 5: Band structure of Na2IrO3 (red symbols) shown together with the tight binding models that involve only parameters
compatible with the quasi-molecular orbitals. Only on-site parameters (top left), up to nearest neighbours (top right), up to
second nearest neighbours (bottom left) and up to third nearest neighbours (bottom right).


